Postsynthesis vapor-phase functionalization of MCM-48 with hexamethyldisilazane and 3-aminopropyldimethylethoxylsilane for bioseparation applications.

نویسندگان

  • Antje Daehler
  • Sasha Boskovic
  • Michelle L Gee
  • Frances Separovic
  • Geoffrey W Stevens
  • Andrea J O'Connor
چکیده

MCM-48 was surface modified via vapor-phase reactions with hexamethyldisilazane (CH(3)-MCM-48) and 3-aminopropyldimethylethoxysilane (NH(2)-MCM-48). (29)Si NMR confirmed that the resulting materials contained covalently attached trimethylsilane and 3-aminopropyldimethylsilane moieties, both important functionalities for bioseparation applications. The surface coverage was approximately 1.8 and 0.9 groups per nm(2), respectively. The X-ray diffraction patterns and the narrow pore size distributions obtained from the gas sorption isotherms showed that the modified materials retained the characteristic pore structure of the underlying MCM-48 material. CH(3)-MCM-48 exhibited significantly improved hydrolytic stability over the unmodified MCM-48 under the aqueous conditions tested, whereas NH(2)-MCM-48 appeared to be less stable than the unmodified MCM-48. The decrease in stability is most likely due to the nature of the attachment of the 3-aminopropyldimethylsilane moiety, where the conversion of surface silanol groups is limited by H bonding with the amino end, leading to a 50% lower surface concentration and resulting in an increased likelihood of nucleophilic attack on the silica surface, enhancing the rate of hydrolysis. Hexamethyldisilazane thus appears to be a superior functional group for modifying the MCM-48 surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Templated Growth of Carbon Nanotubes on Nickel Loaded Mesoporous MCM-41 and MCM-48 Molecular Sieves

Chemical vapor deposition was employed to synthesize carbon nanotubes with Ni-loaded MCM-41 and MCM-48 as catalysts and acetylene as precursor at 750°C. Mesoporous Ni MCM-41 and Ni MCM-48 molecular sieves were synthesized by a hydrothermal method and were characterized by XRD and N2 adsorption isotherm. The catalytically synthesized carbon materials were characterized with Raman spectroscopy, N...

متن کامل

Synthesis of Serrated GaN Nanowires for Hydrogen Gas Sensors Applications by Plasma-Assisted Vapor Phase Deposition Method

Nowadays, the semiconductor nanowires (NWs) typically used in hydrogen gas sensors. Gallium nitride (GaN) with a wide band gap of 3.4 eV, is one of the best semiconductors for this function. NWs surface roughness have important role in gas sensors performance. In this research, GaN NWs have been synthesized on Si substrate by plasma-assisted vapor phase deposition at different deposition time, ...

متن کامل

Sulfunic Acid Modifired MCM-41 Mesoporous Silica as an Efficient Nano-Catalyst for Synthesis of amides and lactams from Oximes Via Beckman Rearrangement

Mesoporous MCM-41 silicas anchored with sulfonic acid (–SO3H) groups (denoted MSN-SA) via postsynthesis modification are very effective for the Beckman rearrangement. A simple and convenient procedure for conversion of a variety oximes to their corresponding amides and lactams has been developed. The reaction was carried out in the presence of MSN-SA as the catalyst. The best results for conver...

متن کامل

Preparation, characterization and determination of photocatalytic activity of MCM-41/ZnO and MCM-48/ZnO nanocomposites

The direct and indirect methods in solvent media and grinding method in a solvent-free media were used to prepare the MCM-41/ZnO and MCM-48/ZnO photocatalysts. The X-ray diffraction (XRD) patterns showed that zinc oxide nanoparticles were put into MCM-41 and MCM-48 substrates and there were ZnO crystallites as secondary phase in the extra framework of mesoporous materials. The decrease of surfa...

متن کامل

Synthesis of MCM-48 with a high thermal and hydro-thermal stability

High thermal and hydro-thermal stable MCM-48 was synthesized by a mixed nonionic–cationic surfactant templating pathway. The sample retains its cubic structure when at 1000 8C for 2 h and when calcined in air with 100% water vapor at 600 8C for 2 h. # 2005 Elsevier Ltd. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 109 34  شماره 

صفحات  -

تاریخ انتشار 2005